Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Vasc Med ; : 1358863X241235669, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568107

ABSTRACT

BACKGROUND: Arterial calcification due to deficiency of CD73 (ACDC; OMIM 211800) is a rare genetic disease resulting in calcium deposits in arteries and small joints causing claudication, resting pain, severe joint pain, and deformities. Currently, there are no standard treatments for ACDC. Our previous work identified etidronate as a potential targeted ACDC treatment, using in vitro and in vivo disease models with patient-derived cells. In this study, we test the safety and effectiveness of etidronate in attenuating the progression of lower-extremity arterial calcification and vascular blood flow based on the computed tomography (CT) calcium score and ankle-brachial index (ABI). METHODS: Seven adult patients with a confirmed genetic diagnosis of ACDC were enrolled in an open-label, nonrandomized, single-arm pilot study for etidronate treatment. They took etidronate daily for 14 days every 3 months and were examined at the NIH Clinical Center bi-annually for 3 years. They received a baseline evaluation as well as yearly follow up after treatment. Study visits included imaging studies, exercise tolerance tests with ABIs, clinical blood and urine testing, and full dental exams. RESULTS: Etidronate treatment appeared to have slowed the progression of further vascular calcification in lower extremities as measured by CT but did not have an effect in reversing vascular and/or periarticular joint calcifications in our small ACDC cohort. CONCLUSIONS: Etidronate was found to be safe and well tolerated by our patients and, despite the small sample size, appeared to show an effect in slowing the progression of calcification in our ACDC patient cohort.(ClinicalTrials.gov Identifier NCT01585402).

2.
Cells ; 13(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474420

ABSTRACT

NAD+ boosting via nicotinamide riboside (NR) confers anti-inflammatory effects. However, its underlying mechanisms and therapeutic potential remain incompletely defined. Here, we showed that NR increased the expression of CC-chemokine receptor 7 (CCR7) in human M1 macrophages by flow cytometric analysis of cell surface receptors. Consequently, chemokine ligand 19 (CCL19, ligand for CCR7)-induced macrophage migration was enhanced following NR administration. Metabolomics analysis revealed that prostaglandin E2 (PGE2) was increased by NR in human monocytes and in human serum following in vivo NR supplementation. Furthermore, NR-mediated upregulation of macrophage migration through CCL19/CCR7 was dependent on PGE2 synthesis. We also demonstrated that NR upregulated PGE2 synthesis through SIRT3-dependent post-transcriptional regulation of cyclooxygenase 2 (COX-2). The NR/SIRT3/migration axis was further validated using the scratch-test model where NR and SIRT3 promoted more robust migration across a uniformly disrupted macrophage monolayer. Thus, NR-mediated metabolic regulation of macrophage migration and wound healing may have therapeutic potential for the topical management of chronic wound healing.


Subject(s)
Dinoprostone , Niacinamide/analogs & derivatives , Pyridinium Compounds , Sirtuin 3 , Humans , Dinoprostone/metabolism , Ligands , Receptors, CCR7/metabolism , Macrophages/metabolism
3.
bioRxiv ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38410425

ABSTRACT

Lipid-derived acetyl-CoA is shown to be the major carbon source for histone acetylation. However, there is no direct evidence demonstrating lipid metabolic pathway contribututions to this process. Mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) catalyzes the final step of ß-oxidation, the aerobic process catabolizing fatty acids (FA) into acetyl-CoA. To investigate this in the context of immunometabolism, we generated macrophage cell line lacking ACAT1. 13C-carbon tracing combined with mass spectrometry confirmed incorporation of FA-derived carbons into histone H3 and this incorporation was reduced in ACAT1 KO macrophage cells. RNA-seq identified a subset of genes downregulated in ACAT1 KO cells including STAT1/2 and interferon stimulated genes (ISGs). CHIP analysis demonstrated reduced acetyl-H3 binding to STAT1 promoter/enhancer regions. Increasing histone acetylation rescued STAT1/2 expression in ACAT1 KO cells. Concomitantly, ligand triggered IFNß release was blunted in ACAT1 KO cells and rescued by reconstitution of ACAT1. Furthermore, ACAT1 promotes FA-mediated histone acetylation in an acetylcarnitine shuttle-dependent manner. In patients with obesity, levels of ACAT1 and histone acetylation are abnormally elevated. Thus, our study identified a novel link between ACAT1 mediated FA metabolism and epigenetic modification on STAT1/2 that uncovers a regulatory role of lipid metabolism in innate immune signaling and opens novel avenues for interventions in human diseases such as obesity.

4.
J Leukoc Biol ; 115(4): 738-749, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38207130

ABSTRACT

Generally, fasting and refeeding confer anti- and proinflammatory effects, respectively. In humans, these caloric-load interventions function, in part, via regulation of CD4+ T cell biology. However, mechanisms orchestrating this regulation remain incomplete. We employed integrative bioinformatics of RNA sequencing and high-performance liquid chromatography-mass spectrometry data to measure serum metabolites and gene expression of peripheral blood mononuclear cells isolated from fasting and refeeding in volunteers to identify nutrient-load metabolite-driven immunoregulation. Propionate, a short chain fatty acid (SCFA), and the SCFA-sensing G protein-coupled receptor 43 (ffar2) were coordinately and inversely regulated by fasting and refeeding. Propionate and free fatty acid receptor agonists decreased interferon-γ and interleukin-17 and significantly blunted histone deacetylase activity in CD4+ T cells. Furthermore, propionate blunted nuclear factor κB activity and diminished interleukin-6 release. In parallel, propionate reduced phosphorylation of canonical T helper 1 (TH1) and TH17 regulators, STAT1 and STAT3, respectively. Conversely, knockdown of free fatty acid receptors significantly attenuated the anti-inflammatory role of propionate. Interestingly, propionate recapitulated the blunting of CD4+ TH cell activation in primary cells from obese individuals, extending the role of this metabolite to a disease associated with low-grade inflammation. Together, these data identify a nutrient-load responsive SCFA-G protein-coupled receptor linked pathway to regulate CD4+ TH cell immune responsiveness.


Subject(s)
Fatty Acids, Nonesterified , Propionates , Humans , Propionates/pharmacology , Leukocytes, Mononuclear , Receptors, G-Protein-Coupled/genetics , Obesity
5.
Proc Natl Acad Sci U S A ; 120(34): e2302738120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579159

ABSTRACT

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by various disabling symptoms including exercise intolerance and is diagnosed in the absence of a specific cause, making its clinical management challenging. A better understanding of the molecular mechanism underlying this apparent bioenergetic deficiency state may reveal insights for developing targeted treatment strategies. We report that overexpression of Wiskott-Aldrich Syndrome Protein Family Member 3 (WASF3), here identified in a 38-y-old woman suffering from long-standing fatigue and exercise intolerance, can disrupt mitochondrial respiratory supercomplex formation and is associated with endoplasmic reticulum (ER) stress. Increased expression of WASF3 in transgenic mice markedly decreased their treadmill running capacity with concomitantly impaired respiratory supercomplex assembly and reduced complex IV levels in skeletal muscle mitochondria. WASF3 induction by ER stress using endotoxin, well known to be associated with fatigue in humans, also decreased skeletal muscle complex IV levels in mice, while decreasing WASF3 levels by pharmacologic inhibition of ER stress improved mitochondrial function in the cells of the patient with chronic fatigue. Expanding on our findings, skeletal muscle biopsy samples obtained from a cohort of patients with ME/CFS showed increased WASF3 protein levels and aberrant ER stress activation. In addition to revealing a potential mechanism for the bioenergetic deficiency in ME/CFS, our study may also provide insights into other disorders associated with fatigue such as rheumatic diseases and long COVID.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Animals , Female , Humans , Mice , COVID-19/metabolism , Fatigue Syndrome, Chronic/diagnosis , Mitochondria/metabolism , Post-Acute COVID-19 Syndrome , Respiration , Wiskott-Aldrich Syndrome Protein Family/metabolism , Mice, Transgenic
6.
Cell Rep Med ; 4(9): 101157, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37586364

ABSTRACT

To evaluate whether nicotinamide adenine dinucleotide-positive (NAD+) boosting modulates adaptive immunity, primary CD4+ T cells from healthy control and psoriasis subjects were exposed to vehicle or nicotinamide riboside (NR) supplementation. NR blunts interferon γ (IFNγ) and interleukin (IL)-17 secretion with greater effects on T helper (Th) 17 polarization. RNA sequencing (RNA-seq) analysis implicates NR blunting of sequestosome 1 (sqstm1/p62)-coupled oxidative stress. NR administration increases sqstm1 and reduces reactive oxygen species (ROS) levels. Furthermore, NR activates nuclear factor erythroid 2-related factor 2 (Nrf2), and genetic knockdown of nrf2 and the Nrf2-dependent gene, sqstm1, diminishes NR amelioratory effects. Metabolomics analysis identifies that NAD+ boosting increases arginine and fumarate biosynthesis, and genetic knockdown of argininosuccinate lyase ameliorates NR effects on IL-17 production. Hence NR via amino acid metabolites orchestrates Nrf2 activation, augments CD4+ T cell antioxidant defenses, and attenuates Th17 responsiveness. Oral NR supplementation in healthy volunteers similarly increases serum arginine, sqstm1, and antioxidant enzyme gene expression and blunts Th17 immune responsiveness, supporting evaluation of NAD+ boosting in CD4+ T cell-linked inflammation.


Subject(s)
Antioxidants , NAD , Humans , NAD/metabolism , Sequestosome-1 Protein/metabolism , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , Oxidation-Reduction , Inflammation/drug therapy
7.
iScience ; 26(5): 106578, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37128607

ABSTRACT

Caloric deprivation interventions such as intermittent fasting and caloric restriction ameliorate metabolic and inflammatory disease. As a human model of caloric deprivation, a 24-h fast blunts innate and adaptive immune cell responsiveness relative to the refed state. Isolated serum at these time points confers these same immunomodulatory effects on transformed cell lines. To identify serum mediators orchestrating this, metabolomic and lipidomic analysis was performed on serum extracted after a 24-h fast and re-feeding. Bioinformatic integration with concurrent peripheral blood mononuclear cells RNA-seq analysis implicated key metabolite-sensing GPCRs in fasting-mediated immunomodulation. The putative GPR18 ligand N-arachidonylglycine (NAGly) was elevated during fasting and attenuated CD4+T cell responsiveness via GPR18 MTORC1 signaling. In parallel, NAGly reduced inflammatory Th1 and Th17 cytokines levels in CD4+T cells isolated from obese subjects, identifying a fasting-responsive metabolic intermediate that may contribute to the regulation of nutrient-level dependent inflammation associated with metabolic disease.

8.
J Clin Invest ; 132(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35025762

ABSTRACT

BACKGROUNDFasting and NAD+-boosting compounds, including NAD+ precursor nicotinamide riboside (NR), confer antiinflammatory effects. However, the underlying mechanisms and therapeutic potential are incompletely defined.METHODSWe explored the underlying biology in myeloid cells from healthy volunteers following in vivo placebo or NR administration and subsequently tested the findings in vitro in monocytes extracted from patients with systemic lupus erythematosus (SLE).RESULTSRNA-Seq of unstimulated and LPS-activated monocytes implicated NR in the regulation of autophagy and type I IFN signaling. In primary monocytes, NR blunted LPS-induced IFN-ß production, and genetic or pharmacological disruption of autophagy phenocopied this effect. Given that NAD+ is a coenzyme in oxidoreductive reactions, metabolomics was performed and identified that NR increased the inosine level. Inosine supplementation similarly blunted autophagy and IFN-ß release. Finally, because SLE exhibits type I IFN dysregulation, we assessed the NR effect on monocytes from patients with SLE and found that NR reduced autophagy and IFN-ß release.CONCLUSIONWe conclude that NR, in an NAD+-dependent manner and in part via inosine signaling, mediated suppression of autophagy and attenuated type I IFN in myeloid cells, and we identified NR as a potential adjunct for SLE management.TRIAL REGISTRATIONClinicalTrials.gov registration numbers NCT02812238, NCT00001846, and NCT00001372.FUNDINGThis work was supported by the NHLBI and NIAMS Intramural Research divisions.


Subject(s)
Lupus Erythematosus, Systemic , NAD , Clinical Studies as Topic , Humans , Inosine , Interferon-beta , Lipopolysaccharides , Monocytes , Niacinamide , Toll-Like Receptor 4
9.
Nutrients ; 13(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924911

ABSTRACT

Intermittent fasting and fasting mimetic diets ameliorate inflammation. Similarly, serum extracted from fasted healthy and asthmatic subjects' blunt inflammation in vitro, implicating serum components in this immunomodulation. To identify the proteins orchestrating these effects, SOMAScan technology was employed to evaluate serum protein levels in healthy subjects following an overnight, 24-h fast and 3 h after refeeding. Partial least square discriminant analysis identified several serum proteins as potential candidates to confer feeding status immunomodulation. The characterization of recombinant IGFBP1 (elevated following 24 h of fasting) and PYY (elevated following refeeding) in primary human CD4+ T cells found that they blunted and induced immune activation, respectively. Furthermore, integrated univariate serum protein analysis compared to RNA-seq analysis from peripheral blood mononuclear cells identified the induction of IL1RL1 and MFGE8 levels in refeeding compared to the 24-h fasting in the same study. Subsequent quantitation of these candidate proteins in lean versus obese individuals identified an inverse regulation of serum levels in the fasted subjects compared to the obese subjects. In parallel, IL1RL1 and MFGE8 supplementation promoted increased CD4+ T responsiveness to T cell receptor activation. Together, these data show that caloric load-linked conditions evoke serological protein changes, which in turn confer biological effects on circulating CD4+ T cell immune responsiveness.


Subject(s)
Blood Proteins/metabolism , CD4-Positive T-Lymphocytes/metabolism , Fasting/metabolism , Inflammation/blood , Nutrients/blood , Obesity/blood , Adult , Aged , Cells, Cultured , Female , Humans , Male , Middle Aged , Pilot Projects , Reproducibility of Results , Young Adult
10.
Rheumatology (Oxford) ; 61(1): 163-173, 2021 12 24.
Article in English | MEDLINE | ID: mdl-33744914

ABSTRACT

OBJECTIVES: Arterial calcification due to deficiency of CD73 (ACDC) is a hereditary autosomal recessive ectopic mineralization syndrome caused by loss-of-function mutations in the ecto-5'-nucleotidase gene. Periarticular calcification has been reported but the clinical characterization of arthritis as well as the microstructure and chemical composition of periarticular calcifications and SF crystals has not been systematically investigated. METHODS: Eight ACDC patients underwent extensive rheumatological and radiological evaluation over a period of 11 years. Periarticular and synovial biopsies were obtained from four patients. Characterization of crystal composition was evaluated by compensated polarized light microscopy, Alizarin Red staining for synovial fluid along with X-ray diffraction and X-ray micro tomosynthesis scanner for periarticular calcification. RESULTS: Arthritis in ACDC patients has a clinical presentation of mixed erosive-degenerative joint changes with a median onset of articular symptoms at 17 years of age and progresses over time to the development of fixed deformities and functional limitations of small peripheral joints with, eventually, larger joint and distinct axial involvement later in life. We have identified calcium pyrophosphate and calcium hydroxyapatite (CHA) crystals in SF specimens and determined that CHA crystals are the principal component of periarticular calcifications. CONCLUSION: This is the largest study in ACDC patients to describe erosive peripheral arthropathy and axial enthesopathic calcifications over a period of 11 years and the first to identify the composition of periarticular calcifications and SF crystals. ACDC should be considered among the genetic causes of early-onset OA, as musculoskeletal disease signs may often precede vascular symptoms.


Subject(s)
5'-Nucleotidase/deficiency , Calcinosis/diagnostic imaging , Joint Diseases/diagnostic imaging , Periarthritis/diagnostic imaging , Vascular Diseases/diagnostic imaging , 5'-Nucleotidase/genetics , Calcinosis/genetics , Calcinosis/pathology , Child, Preschool , Female , GPI-Linked Proteins/genetics , Humans , Joint Diseases/genetics , Joint Diseases/pathology , Male , Middle Aged , Periarthritis/genetics , Periarthritis/pathology , Radiography , Vascular Diseases/genetics , Vascular Diseases/pathology
11.
Nat Metab ; 3(3): 318-326, 2021 03.
Article in English | MEDLINE | ID: mdl-33723462

ABSTRACT

Intermittent fasting blunts inflammation in asthma1 and rheumatoid arthritis2, suggesting that fasting may be exploited as an immune-modulatory intervention. However, the mechanisms underpinning the anti-inflammatory effects of fasting are poorly characterized3-5. Here, we show that fasting in humans is sufficient to blunt CD4+ T helper cell responsiveness. RNA sequencing and flow cytometry immunophenotyping of peripheral blood mononuclear cells from volunteers subjected to overnight or 24-h fasting and 3 h of refeeding suggest that fasting blunts CD4+ T helper cell activation and differentiation. Transcriptomic analysis reveals that longer fasting has a more robust effect on CD4+ T-cell biology. Through bioinformatics analyses, we identify the transcription factor FOXO4 and its canonical target FK506-binding protein 5 (FKBP5) as a potential fasting-responsive regulatory axis. Genetic gain- or loss-of-function of FOXO4 and FKBP5 is sufficient to modulate TH1 and TH17 cytokine production. Moreover, we find that fasting-induced or genetic overexpression of FOXO4 and FKBP5 is sufficient to downregulate mammalian target of rapamycin complex 1 signalling and suppress signal transducer and activator of transcription 1/3 activation. Our results identify FOXO4-FKBP5 as a new fasting-induced, signal transducer and activator of transcription-mediated regulatory pathway to blunt human CD4+ T helper cell responsiveness.


Subject(s)
Cell Cycle Proteins/biosynthesis , Fasting , Forkhead Transcription Factors/biosynthesis , T-Lymphocytes, Helper-Inducer/immunology , Gene Expression Regulation , Humans , Sequence Analysis, RNA
12.
JNCI Cancer Spectr ; 4(6): pkaa063, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33490865

ABSTRACT

BACKGROUND: Li-Fraumeni syndrome (LFS) is a highly penetrant autosomal dominant cancer predisposition disorder caused by germline TP53 pathogenic variants. Patients with LFS have increased oxidative phosphorylation capacity in skeletal muscle and oxidative stress in blood. Metformin inhibits oxidative phosphorylation, reducing available energy for cancer cell proliferation and decreasing production of reactive oxygen species that cause DNA damage. Thus, metformin may provide pharmacologic risk reduction for cancer in patients with LFS, but its safety in nondiabetic patients with germline TP53 pathogenic variants has not been documented. METHODS: This study assessed safety and tolerability of metformin in nondiabetic LFS patients and measured changes in metabolic profiles. Adult patients with LFS and germline TP53 variant received 14 weeks of metformin. Blood samples were obtained for measurement of serum insulin-like growth factor-1, insulin, and insulin-like growth factor binding protein 3. Hepatic mitochondrial function was assessed with fasting exhaled CO2 after ingestion of 13C-labeled methionine. Changes in serum metabolome were measured. All statistical tests were 2-sided. RESULTS: We enrolled 26 participants: 20 females and 6 males. The most common adverse events were diarrhea (50.0%) and nausea (46.2%). Lactic acidosis did not occur, and there were no changes in fasting glucose. Cumulative mean 13C exhalation was statistically significantly suppressed by metformin (P = .001). Mean levels of insulin-like growth factor binding protein 3 and insulin-like growth factor-1 were statistically significantly lowered (P = .02). Lipid metabolites and branched-chain amino acids accumulated. CONCLUSIONS: Metformin was safe and tolerable in patients with LFS. It suppressed hepatic mitochondrial function as expected in these individuals. This study adds to the rationale for development of a pharmacologic risk-reduction clinical trial of metformin in LFS.

13.
J Immunol ; 201(5): 1382-1388, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30021766

ABSTRACT

A fasting mimetic diet blunts inflammation, and intermittent fasting has shown ameliorative effects in obese asthmatics. To examine whether canonical inflammatory pathways linked with asthma are modulated by fasting, we designed a pilot study in mild asthmatic subjects to assess the effect of fasting on the NLRP3 inflammasome, Th2 cell activation, and airway epithelial cell cytokine production. Subjects with documented reversible airway obstruction and stable mild asthma were recruited into this study in which pulmonary function testing (PFT) and PBMCextraction was performed 24 h after fasting, with repeated PFT testing and blood draw 2.5 h after refeeding. PFTs were not changed by a prolonged fast. However, steroid-naive mild asthmatics showed fasting-dependent blunting of the NLRP3 inflammasome. Furthermore, PBMCs from these fasted asthmatics cocultured with human epithelial cells resulted in blunting of house dust mite-induced epithelial cell cytokine production and reduced CD4+ T cell Th2 activation compared with refed samples. This pilot study shows that prolonged fasting blunts the NLRP3 inflammasome and Th2 cell activation in steroid-naive asthmatics as well as diminishes airway epithelial cell cytokine production. This identifies a potential role for nutrient level-dependent regulation of inflammation in asthma. Our findings support the evaluation of this concept in a larger study as well as the potential development of caloric restriction interventions for the treatment of asthma.


Subject(s)
Asthma/immunology , Fasting , Immunomodulation , Lymphocyte Activation , Th2 Cells/immunology , Adult , Asthma/pathology , Cells, Cultured , Cytokines/immunology , Female , Humans , Inflammasomes/immunology , Male , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Pilot Projects , Steroids , Th2 Cells/pathology
14.
J Clin Invest ; 127(1): 132-136, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27869650

ABSTRACT

Li-Fraumeni syndrome (LFS) is a cancer predisposition disorder caused by germline mutations in TP53 that can lead to increased mitochondrial metabolism in patients. However, the implications of altered mitochondrial function for tumorigenesis in LFS are unclear. Here, we have reported that genetic or pharmacologic disruption of mitochondrial respiration improves cancer-free survival in a mouse model of LFS that expresses mutant p53. Mechanistically, inhibition of mitochondrial function increased autophagy and decreased the aberrant proliferation signaling caused by mutant p53. In a pilot study, LFS patients treated with metformin exhibited decreases in mitochondrial activity concomitant with activation of antiproliferation signaling, thus reproducing the effects of disrupting mitochondrial function observed in LFS mice. These observations indicate that a commonly prescribed diabetic medicine can restrain mitochondrial metabolism and tumorigenesis in an LFS model, supporting its further consideration for cancer prevention in LFS patients.


Subject(s)
Li-Fraumeni Syndrome/prevention & control , Metformin/pharmacology , Mitochondria/metabolism , Neoplasms, Experimental/prevention & control , Oxygen Consumption/drug effects , Adult , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , Female , Humans , Jurkat Cells , Li-Fraumeni Syndrome/genetics , Li-Fraumeni Syndrome/metabolism , Male , Mice , Mice, Mutant Strains , Middle Aged , Mitochondria/genetics , Mitochondria/pathology , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Oxygen Consumption/genetics , Pilot Projects , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
15.
J Clin Invest ; 125(12): 4592-600, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26529255

ABSTRACT

BACKGROUND: Activation of the NLRP3 inflammasome is associated with metabolic dysfunction, and intermittent fasting has been shown to improve clinical presentation of NLRP3 inflammasome-linked diseases. As mitochondrial perturbations, which function as a damage-associated molecular pattern, exacerbate NLRP3 inflammasome activation, we investigated whether fasting blunts inflammasome activation via sirtuin-mediated augmentation of mitochondrial integrity. METHODS: We performed a clinical study of 19 healthy volunteers. Each subject underwent a 24-hour fast and then was fed a fixed-calorie meal. Blood was drawn during the fasted and fed states and analyzed for NRLP3 inflammasome activation. We enrolled an additional group of 8 healthy volunteers to assess the effects of the sirtuin activator, nicotinamide riboside, on NLRP3 inflammasome activation. RESULTS: In the fasting/refeeding study, individuals showed less NLRP3 inflammasome activation in the fasted state compared with that in refed conditions. In a human macrophage line, depletion of the mitochondrial-enriched sirtuin deacetylase SIRT3 increased NLRP3 inflammasome activation in association with excessive mitochondrial ROS production. Furthermore, genetic and pharmacologic SIRT3 activation blunted NLRP3 activity in parallel with enhanced mitochondrial function in cultured cells and in leukocytes extracted from healthy volunteers and from refed individuals but not in those collected during fasting. CONCLUSIONS: Together, our data indicate that nutrient levels regulate the NLRP3 inflammasome, in part through SIRT3-mediated mitochondrial homeostatic control. Moreover, these results suggest that deacetylase-dependent inflammasome attenuation may be amenable to targeting in human disease. TRIAL REGISTRATION: ClinicalTrials.gov NCT02122575 and NCT00442195. FUNDING: Division of Intramural Research, NHLBI of the NIH.


Subject(s)
Carrier Proteins/blood , Eating , Fasting/blood , Inflammasomes/blood , Mitochondria/metabolism , Adult , Female , Humans , Male , NLR Family, Pyrin Domain-Containing 3 Protein , Niacinamide/administration & dosage , Niacinamide/analogs & derivatives , Pyridinium Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...